首页> 外文OA文献 >Characterization of underwater target geometry from autonomous underwater vehicle sampling of bistatic acoustic scattered fields
【2h】

Characterization of underwater target geometry from autonomous underwater vehicle sampling of bistatic acoustic scattered fields

机译:基于双基地声散射场的自主水下航行器采样水下目标几何特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the long term goals of Autonomous Underwater Vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and expert image interpretation. This thesis proposes a vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target for lower cost-per-vehicle sensing and onboard, fully autonomous classification. The contributions of this thesis include the collection of novel high-quality bistatic data sets around spherical and cylindrical targets in situ during the BayEx'14 and Massachusetts Bay 2014 scattering experiments and the development of a machine learning methodology for classifying target shape and estimating orientation using bistatic amplitude data collected by an AUV. To achieve the high quality, densely sampled 3D bistatic scattering data required by this research, vehicle broadside sampling behaviors and an acoustic payload with precision timed data acquisition were developed. Classification was successfully demonstrated for spherical versus cylindrical targets using bistatic scattered field data collected by the AUV Unicorn as a part of the BayEx'14 scattering experiment and compared to simulated scattering models. The same machine learning methodology was applied to the estimation of orientation of aspect-dependent targets, and was demonstrated by training a model on data from simulation then successfully estimating the orientations of a steel pipe in the Massachusetts Bay 2014 experiment. The final models produced from real and simulated data sets were used for classification and parameter estimation of simulated targets in real time in the LAMSS MOOS-IvP simulation environment.
机译:自主水下航行器(AUV)的长期目标之一是在港口内拥有多个廉价的AUV,以自动对危害进行分类。使用基于AUV的传感技术进行目标分类的现有声学方法,例如侧面扫描和合成孔径声纳,要求每辆装备好的车辆都配备昂贵的有效载荷,并且需要专家进行图像解析。本文提出了一种车辆有效载荷和机器学习分类方法,该方法利用目标声源与目标之间的目标散射幅度的双基地角依赖性来实现较低的每车成本感测和车载完全自主分类。本论文的贡献包括在BayEx'14和Massachusetts Bay 2014散射实验期间围绕球形和圆柱形目标原位收集新颖的高质量双基地数据集,并开发了一种机器学习方法,用于对目标形状进行分类并使用AUV收集的双基地振幅数据。为了获得本研究所需的高质量,密集采样的3D双基地散射数据,开发了车辆宽边采样行为和具有精确定时数据采集的声学有效载荷。使用AUV Unicorn收集的双基地散射场数据作为BayEx'14散射实验的一部分,成功地证明了球形和圆柱形目标的分类,并与模拟散射模型进行了比较。相同的机器学习方法被应用于依赖于方面的目标的方向估计,并通过在模拟数据中训练模型然后在马萨诸塞州湾2014实验中成功估计钢管的方向进行了演示。在LAMSS MOOS-IvP模拟环境中,使用真实和模拟数据集生成的最终模型用于实时对模拟目标进行分类和参数估计。

著录项

  • 作者

    Fischell, Erin Marie;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号